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Abstract
We review the current status of the application of the local composite
operator technique to the condensation of dimension 2 operators in quantum
chromodynamics (QCD). We pay particular attention to the renormalization
group aspects of the formalism and the renormalization of QCD in various
gauges.

PACS numbers: 11.15.−q, 12.38.−t, 11.10.Gh

1. Introduction

The quantum field theory underlying the strong force of nature is widely accepted as
being quantum chromodynamics (QCD) which is a non-Abelian generalization of quantum
electrodynamics. At large energy the constituent fields, the quarks and gluons, behave as
free particles which is a property known as asymptotic freedom. In this case one performs
calculations in QCD based on a vacuum which is empty and which is known as the perturbative
vacuum. However, it is accepted [1–4] that the true vacuum of QCD is more complicated and
is not the perturbative one. An indication of this is that in the true vacuum gauge invariant
operators condense. Indeed the two operators which receive wide attention are the operators
αSG

a
µνG

aµν and ψ̄ψ , where Ga
µν is the gluon field strength, ψ is the quark field and αS is the

strong coupling constant. Consequently, it is possible to incorporate the vacuum expectation
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values
〈
αSG

a
µνG

aµν
〉

and 〈ψ̄ψ〉 into the operator product expansion in order to determine the
effects they have in the measurements of physical quantities and QCD sum rules [5]. Indeed
it is possible to extract numerical estimates for them. Whilst these operators are the main
ones of interest, it has been pointed out more recently that additionally one can construct a
dimension 2 operator in QCD which is gauge invariant [6–8]. However, this is also believed
to condense giving rise to O(1/Q2) power corrections in the operator product expansion and
other quantities, [9–11]. Specifically the operator is

Ã2
µ =

[
min
{U}

∫
d4x

(
AU

µ

)2
]
V−1, (1)

where U represents the set of all gauge configurations and Ãa
µ is constructed in such a way that

it is in fact gauge invariant. Consequently, unlike Ga
µνG

aµν and ψ̄ψ , the operator is non-local
but can be written in terms of the usual gluon gauge field yielding a power series in g when
evaluated explicitly. This dimension 2 operator has been the subject of intense study in recent
years, mostly from the point of view of trying to estimate a value for its vacuum expectation
value, [12–26]. Further, the role a non-vanishing vacuum expectation value of a dimension
2 operator had on the estimate of glueball masses in the Coulomb gauge had been discussed
earlier in [27].

Having a non-zero vacuum expectation value for this operator has interesting implications
for trying to understand the properties of QCD and for phenomenology. One area of study has
been on the lattice where there appears to be numerical evidence for 1/Q2 power corrections
in a variety of quantities [9–11]. For example, an effective strong coupling constant, αeff

S (Q2),
requires a 1/Q2 correction to correctly fit lattice data in the range 2–6 GeV [28, 29]. This
necessitates a dimension 2 object on dimensional grounds. Another consequence is that such
a dimension 2 condensate would imply that the gluon has an effective mass which is generated
dynamically [13, 14]. Estimates for the value of such a mass have been summarized in
table 15 of Field’s paper [30]. These have been extracted from phenomenology where one
includes a gluon with a mass in order to fit experimental data more accurately.

However, one of the main interests in understanding gluon mass is its relationship to the
confinement mechanism. Whilst there are various ideas about what underlies this property
of QCD and the strong force, the actual situation has not been determined yet. One point
of view is that of Abelian dominance [31–33]. Essentially this is based on the premise that
in the infrared the Abelian sector of the gluon field dominates. It is then believed that the
infrared sector of QCD could be described by a dual superconductor, whereby a monopole
condensation would give rise to confinement via the dual Meissner effect. Moreover, in
the context of the generation of an effective gluon mass, one viewpoint is that in the infrared
the gluons associated with the centre of the colour group remain massless whilst the off-
diagonal gluons gain a mass dynamically. Indeed there appears to be some preliminary lattice
evidence for such a scenario [34, 35]. To investigate such a hypothesis in QCD from a field
theory point of view requires both a calculational technique to handle dimension 2 operator
condensation as well as a way of focusing on the centre gluon fields. For the former, the local
composite operator (LCO) method has been developed both for QCD [8], and for models such
as the two-dimensional Gross-Neveu model [36, 37], where one has the exact mass gap to
justify the approach. To examine the differing nature of the gluon field, one can choose to fix in
the maximal Abelian gauge (MAG) where the gauge fixing differentiates between centre and
off-diagonal gluons. In this paper mainly we review the procedures and recent results in using
the LCO method to study the consequences of the condensation of a dimension 2 operator in
QCD in various gauges, concentrating on those aspects which relate to the renormalization
group which underpins the technique.
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2. Background

Before detailing the LCO approach, it is worth recalling the background to the problem of
gluon mass in Yang–Mills theories. One early study was that of Curci and Ferrari in [38]
where they constructed a Lagrangian with a gluon and ghost mass with a nonlinear gauge
fixing. In particular, the Lagrangian is

L = −1

4
GA

µνG
Aµν − 1

2α

(
∂µAA

µ

)2
+

m2

2
AA

µAAµ + ∂µc̄A∂µcA − αm2c̄AcA

− g

2
f ABCAA

µc̄B
↔
∂µcC +

αg2

8
f EABf ECDc̄AcBc̄CcD + iψ̄D/ψ − mqψ̄ψ, (2)

where AA
µ, cA and ψiI are the respective gluon, ghost and quark fields, 1 � A � NA, 1 �

I � NF and 1 � i � Nf with NA and NF the respective dimensions of the adjoint
and fundamental representations, Nf is the number of quarks, T A are the generators of
the colour group whose structure constants are f ABC and the field strength is given by
GA

µν = ∂µAA
ν − ∂νA

A
ν − gf ABCAB

µAC
ν , where g is the coupling constant. In the case when the

gluon mass m is zero, the Lagrangian is regarded as QCD fixed in the Curci–Ferrari gauge.
It gives rise to a different gluon–ghost interaction from that of the usual linear covariant
gauge fixing. In addition, there is a quartic ghost interaction which does not invalidate the
renormalizability of the Lagrangian. When m is non-zero one has a mass for both the gluon
and the ghost where the respective gluon and ghost propagators are

− δAB

(k2 + m2)

[
ηµν − (1 − α)kµkν

(k2 + αm2)

]
and

δAB

(k2 + αm2)
. (3)

Whilst the Lagrangian is no longer invariant under gauge transformations, it is in fact (on-shell)
BRST invariant for non-zero m [38]. This latter property suggests it is a reasonable candidate
for studying models with gluon mass. However, the initial interest in this model had to be
tempered with the realization that whilst one has BRST invariance, the BRST charge is not
nilpotent since its square is proportional to m2. Consequently, one does not have an unitary
theory and negative norm states can be constructed to demonstrate this [39, 40]. Aside from
these limitations the Curci–Ferrari model has several important properties. One is that the
presence of a mass for the gluon provides a natural infrared regulator in the theory. Indeed,
it has been renormalized explicitly at two loops [41, 42]. Therefore, it could be a useful tool
in extracting renormalization constants where there are potential infrared problems. More
importantly, though the resurgence of interest in this model rests in its relationship to other
gauges. In the case where α = 0, the Curci–Ferrari gauge reduces to the usual Landau gauge
[38]. However, if one examines the off-diagonal sector of QCD fixed in the maximal Abelian
gauge (MAG), it transpires that sector is precisely QCD fixed in the Curci–Ferrari gauge [13].
Therefore, the Curci–Ferrari model can be used as a laboratory for investigating the problem of
Abelian dominance in QCD and the dynamical generation of mass for the off-diagonal gluons.
Whilst the main disadvantage of the Curci–Ferrari model is the presence of a classical gluon
mass leading to loss of unitarity, if a mass was generated dynamically by the condensation of a
dimension 2 (BRST or gauge invariant) operator, then the unitarity issue may be circumvented.

3. LCO method

The LCO method is a procedure for including low dimension operators, such as 1
2AA

µAAµ, in
the underlying quantum field theory and determining its effective potential. In this way one
can examine to what extent the operator condenses by calculating whether the energy of the
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true vacuum when the operator is present is less than that of the true vacuum in its absence.
For QCD, it turns out that it leads to a modification of the Lagrangian so that new interactions
are introduced which lead to an effective gluon mass. Part of the justification in applying the
LCO method to QCD in a variety of gauges, such as the Landau, Curci–Ferrari or MAG, lies
in the treatment of the two-dimensional O(N) Gross-Neveu model. There the mass gap is
known exactly and the LCO approach obtains values for the mass gap to a few per cent for a
large range of N [36, 37].

We now summarize the application of the method in the case of QCD in the Landau
gauge. One of the advantages of this gauge is that the gauge invariant non-local operator (1)
truncates to a single-term local composite operator 1

2AA
µAAµ [8]. In this instance one couples

the operator to a source J yielding the energy functional W [J ]

e−W [J ] =
∫

D[Aµψψ̄cc̄] exp

[∫
ddx

(
Lgf − 1

2
ZmJAA2

µ +
1

2
(ξ + δξ)J 2

)]
. (4)

From this, W [J ] satisfies a renormalization group equation[
µ

∂

∂µ
+ β(g)

∂

∂g2
− γm(g)

∫
J

∂

∂J
+ η(g, ξ)

∂

∂ξ

]
W [J ] = 0, (5)

where γm(g) is the anomalous dimension of the operator derived from the corresponding
renormalization constant Zm and µ is the renormalization scale introduced when one uses
dimensional regularization in d = 4 − 2ε dimensions which is the regularization employed
here. To ensure renormalizability, one requires the additional term quadratic in J . This
is because the vacuum energy in the presence of the operator is divergent with divergences
proportional to J 2 appearing. The coefficient of J 2 is defined as ξ , where δξ is the counterterm
and is at present not fixed [8]. However, one can define a renormalization group function for
the infinities associated with the J 2 term which are encoded in the related quantities η(g, ξ)

and δ(g) by

η(g, ξ) = µ
∂ξ

∂µ

∣∣∣∣ = 2γm(g)ξ + δ(g), δ(g) =
(

2ε + 2γm(g) − β(g)
∂

∂g2

)
δξ. (6)

In order to have a homogeneous renormalization group equation for W [J ], the as yet
undetermined parameter ξ must satisfy

β(g)
dξ

dg2
= 2γm(g)ξ + δ(g) (7)

whence [
µ

∂

∂µ
+ β(g)

∂

∂g2
− γm(g)

∫
J

∂

∂J

]
W [J ] = 0. (8)

Therefore, solving (7) will determine ξ(g) once γm(g) and δ(g) are known and this ensures
that ξ(g) runs as g(µ) runs. More importantly, the homogeneity of (8) ensures that one retains
an energy interpretation so that an effective action and thence an effective potential can be
constructed for the operator in question [8, 36, 37].

For practical calculations, it would be more appropriate to have a functional with a linear
source. This can be achieved by a Hubbard–Stratonovich transformation which introduces a
scalar field σ via

1 =
∫

Dσ exp

(
−

∫ [
a1σ + a2A

A2
µ + a3J

]2
)

, (9)
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where the coefficients ai are chosen appropriately to cancel the J 2 term. Consequently, in the
Landau gauge one obtains the renormalizable Lagrangian for σ , and therefore the operator
1
2AA

µAAµ as

Lσ = Lgf − σ 2

2g2ξ(g)Zξ

+
Zm

2gξ(g)Zξ

σAA
µAAµ − Z2

m

8ξ(g)Zξ

(
AA

µAAµ
)2

. (10)

Once the expressions for γm(g) and ξ(g) are known, then the effective potential can be
constructed. Though for a two-loop potential, one requires the renormalization group functions
at three loops.

4. Three-loop renormalization

As the LCO method relies on requiring explicit values of the renormalization group functions
at large loop order, it is important to study the renormalization of QCD in the context of
the operator 1

2AA
µAAµ and in various gauges. For the Landau gauges, all the information to

construct γm(g) in fact is in place. This is due to an observation from explicit calculations
and the general formalism of algebraic renormalization which demonstrate that to all orders
in perturbation theory the anomalous dimension of 1

2AA
µAAµ is not independent [43]. More

specifically

γm(g) = γA(g) + γc(g) (11)

in the Landau gauge. This curious property is not restricted to this gauge as in the MAG the
anomalous dimension of the analogous dimension 2 operator, based on off-diagonal fields,
involves the anomalous dimensions of the diagonal gluon and diagonal ghost [26]. In the
more general Curci–Ferrari gauge, we have observed a generalization of (11) in an explicit
three-loop MS renormalization [44], which is

γm(g) = γA(g) + γc(g) − 2γα(g), (12)

where we note that unlike the linear covariant gauges the anomalous dimension corresponding
to the renormalization of the gauge parameter, γα(g), is non-zero. Unfortunately, it has not
been established whether this latter relation remains valid beyond three loops.

One issue which arises when one is working with the renormalization of operators
and this is the question of operator mixing. The BRST-invariant mass operator involves
the two terms 1

2AA
µAAµ and c̄AcA. In principle, it could be the case that the combination

O = 1
2AA

µAAµ − αc̄AcA does not renormalize multiplicatively. However, in linear covariant
gauges it turns out that the mixing matrix is triangular [45], but not in the Curci–Ferrari gauge.
Indeed in [46], the one-loop mixing matrix for Oi was determined where O1 = 1

2AA
µAAµ and

O2 = c̄AcA. We have extended that calculation to two loops for potential future extensions of
the operator product expansion analysis of [46]. If we set

Ooi = ZijOj , (13)

where Zij is the mixing matrix of renormalization constants. With

γij (g) = µ
∂

∂µ
ln Zij (14)

then we have

γ11 =
(

35

12
+

α

4

)
CAa +

(
449

48
+

11α

16
+

3α2

16

)
C2

Aa2 + O(a3)

γ12 = −α2

4
CAa −

(
5α2

16
+

α3

8

)
C2

Aa2 + O(a3)
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γ21 = α

2
CAa −

(
11

8
+

α

4

)
C2

Aa2 + O(a3)

γ22 =
(

3

4
− α

4

)
CAa +

(
95

48
+

α

16
− α2

8

)
C2

Aa2 + O(a3), (15)

where a = g2/(16π2), T AT A = CF I, f ACDf BCD = CAδAB and Tr(T AT B) = TF δAB .
These results were obtained by renormalizing the operators in the Curci–Ferrari model where
there is a non-zero infrared regulating mass, by inserting them into gluon and ghost two-point
functions. The Curci–Ferrari model has the advantage that external momenta can be nullified
without introducing spurious infrared infinities as a consequence. It remains merely to extract
the infinities from the resultant vacuum bubbles. Not only did we reproduce the one-loop
matrix of Kondo [46], but also we obtained the result that

γm(g) = γ11(g) − αγ21(g) (16)

at two loops, thus verifying that O is multiplicatively renormalizable at this order.
For three-loop calculations, the massive propagator approach is tedious and we produced

an equivalent method based on the Mincer algorithm [47, 48], which is implemented in the
symbolic manipulation language Form [49]. For example, one can determine δξ by treating
the term 1

2JAA
µAAµ of (10) as an interaction and computing the divergence structure of the

J two-point function with massless internal fields, but not internal J propagators [24]. The
explicit Feynman diagrams are generated automatically with the Qgraf package [50].
The Mincer algorithm was especially appropriate for the three-loop renormalization of QCD in
the MAG [51], which is necessary for the construction of the two-loop effective potential for the
analogous dimension 2 BRST-invariant operator. Unlike the linear covariant gauges, the full
three-loop renormalization was determined only recently [51]. Moreover, it was a significantly
large computation requiring the evaluation of 37 322 Feynman diagrams compared with of the
order of 1000 for a linear covariant gauge three-loop renormalization.

Briefly, the MAG involves the decomposition of the gauge field AA
µ into diagonal and

off-diagonal sectors

AA
µT A = Aa

µT a + Ai
µT i, (17)

where 1 � a � No
A and 1 � i � Nd

A and Nd
A is the dimension of the centre of the colour group

and No
A is the dimension of the remainder with Nd

A + No
A = NA. Notationally we will reserve

i, j, k and l for indices on objects which lie in the centre of the group and the remaining lower
case Roman letters for off-diagonal objects. Consequently, the MAG gauge fixing term is
[26],

LMAG
gf = δδ̄

[
1
2A

a
µAaµ + 1

2αc̄aca
]

+ δ
[
c̄i∂µAi

µ

]
, (18)

where δ and δ̄ are the BRST and anti-BRST transformations. The remaining gauge freedom
associated with the diagonal gluons is fixed by using a Landau gauge. Further, the analogous
mass operator to O is

OMAG = 1
2A

a
µAaµ − αc̄aca. (19)

To renormalize the resultant Lagrangian

LMAG
gf = − 1

2α

(
∂µAa

µ

)2 − 1

2ᾱ

(
∂µAi

µ

)2
+ c̄a∂µ∂µca + c̄i∂µ∂µci

+ g

[
f abkAa

µc̄k∂µcb − f abcAa
µc̄b∂µcc − 1

α
f abk∂µAa

µAb
νA

kν − f abk∂µAa
µcbc̄k

− 1

2
f abc∂µAa

µc̄bcc − 2f abkAk
µc̄a∂µc̄b − f abk∂µAk

µc̄bcc

]
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+ g2

[
f acbd

d Aa
µAbµc̄ccd − 1

2α
f akbl

o Aa
µAbµAk

νA
lν + f adcj

o Aa
µAjµc̄ccd

− 1

2
f ajcd

o Aa
µAjµc̄ccd + f ajcl

o Aa
µAjµc̄ccl + f alcj

o Aa
µAjµc̄ccl − f cjdi

o Ai
µAjµc̄ccd

− α

4
f abcd

d c̄a c̄bcccd − α

8
f abcd

o c̄a c̄bcccd +
α

8
f acbd

o c̄a c̄bcccd − α

4
f abcl

o c̄a c̄bcccl

+
α

4
f acbl

o c̄a c̄bcccl − α

4
f albc

o c̄a c̄bcccl +
α

2
f akbl

o c̄a c̄bckcl

]
,

where

f ABCD
d = f iABf iCD, f ABCD

o = f eABf eCD (20)

one introduces renormalization constants via [26, 52–56],

A
aµ
o = √

ZAAaµ, A
iµ
o = √

ZAi Aiµ

ca
o = √

Zcc
a, c̄a

o = √
Zcc̄

a

ci
o = √

Zci ci, c̄i
o = c̄i√

Zci

, ψo = √
Zψψ,

go = µεZgg, αo = Z−1
α ZAα, ᾱo = Z−1

αi ZAi ᾱ.

(21)

However, it is crucial to note that this choice is determined by the application of the algebraic
renormalization method [26]. This shows, for example, that the diagonal ghost two-point
function is finite to all orders and implies that its anomalous dimension must be deduced from
another Green’s function such as the Aa

µc̄icb vertex. Also, the diagonal gluon anomalous
dimension is not independent since its associated renormalization constant is equivalent to
that for the coupling constant [26]. A similar feature occurs in the background field gauge
[57–60]. Whilst the application of the Mincer algorithm is straightforward to extract all the
necessary renormalization constants, the bulk of the work lies in symbolically implementing
the underlying group theory relations founded upon the elementary equations

f ijk = f ajk = 0, f abk �= 0, f abc �= 0. (22)

Consequently, one obtains representative anomalous dimensions of the following form in the
MS scheme:

γci (a) = 1

4No
A

[
No

A((−α − 3)CA) + Nd
A ((−2α − 6)CA)

]
a

+
1

96No
A

2

[
No

A
2(

(−6α2 − 66α − 190)C2
A + 80CATF Nf

)

+ No
ANd

A

(
(−54α2 − 354α − 323)C2

A + 160CATF Nf

)
+ Nd

A

2(
(−60α2 − 372α + 510)C2

A

)]
a2

+
1

6912No
A

3

[
No

A
3(

(−162α3 − 2727α2 − 2592ζ3α − 18036α

− 1944ζ3 − 63 268)C3
A + (6912α + 62 208ζ3 + 6208)C2

ATF Nf

+ (−82 944ζ3 + 77 760)CACF TF Nf + 8960CAT 2
F N2

f

)
+ No

A
2
Nd

A

(
(−2754α3 + 648ζ3α

2 − 28 917α2 − 4212ζ3α − 69 309α

+ 37 260ζ3 − 64 544)C3
A + (25 488α + 103 680ζ3 − 13 072)C2

ATF Nf

+ (−165 888ζ3 + 155 520)CACF TF Nf + 17 920CAT 2
F N2

f

)
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+ No
ANd

A

2(
(−7884α3 + 22 680ζ3α

2 − 84 564α2 + 97 524ζ3α

− 47 142α + 433 836ζ3 − 56 430)C3
A

+ (25 056α − 124 416ζ3 − 18 144)C2
ATF Nf

)
+ Nd

A

3(
(−6480α3 + 34 992ζ3α

2 − 70 092α2 + 8424ζ3α

+ 114 912α + 77 112ζ3 − 161 028)C3
A

)]
a3 + O(a4) (23)

and

γO(a) = 1

12No
A

[
No

A((−3α + 35)CA − 16Tf Nf ) + Nd
A ((−6α − 18)CA)

]
a

+
1

96No
A

2

[
No

A
2(

(−6α2 − 66α + 898)C2
A − 560CATf Nf − 384CF Tf Nf

)

+ No
ANd

A

(
(−54α2 − 354α − 323)C2

A + 160CATf Nf

)
+ Nd

A

2(
(−60α2 − 372α + 510)C2

A

)]
a2

+
1

6912No
A

3

[
No

A
3(

(−162α3 − 2727α2 − 2592ζ3α − 18 036α

− 1944ζ3 + 302 428)C3
A + (6912α + 62 208ζ3 − 356 032)C2

ATF Nf

+ (−82 944ζ3 − 79 680)CACF TF Nf + 49 408CAT 2
F N2

f + 13 824C2
F TF Nf

+ 33 792CF T 2
F N2

f

)
+ No

A
2
Nd

A

(
(−2754α3 + 648α2ζ3 − 28917α2

− 4212αζ3 − 69 309α + 37 260ζ3 − 64 544)C3
A

+ (25 488α + 103 680ζ3 − 13 072)C2
ATF Nf

+ (−165 888 ζ3 + 155 520)CACF TF Nf + 17 920CAT 2
F N2

f

)
+ No

ANd
A

2(
(−7884α3 + 22 680α2ζ3 − 84 564α2 + 97 524αζ3

− 47 142α + 433 836ζ3 − 56 430)C3
A + (25 056α − 124 416ζ3

− 18 144)C2
ATF Nf

)
+ Nd

A

3(
(−6480α3 + 34 992α2ζ3 − 70 092α2

+ 8424αζ3 + 114 912α + 77 112ζ3 − 161 028)C3
A

)]
a3 + O(a4) (24)

for the MAG mass operator where ζn is the Riemann zeta function [51]. In addition, the
three-loop β-function correctly emerges from the diagonal gluon two-point function which is
a strong check on the programming and computation, since not only it must be independent
of the gauge parameter α, but also of the sector dimensions Nd

A and No
A . Another useful

check on this and the anomalous dimensions was the fact that the known Curci–Ferrari gauge
anomalous dimensions [41, 42, 44], emerge in the limit Nd

A

/
No

A → 0. This is consistent with
the relation of the Curci–Ferrari gauge to the MAG [13].

5. Results

Having detailed the renormalization group aspects underlying the LCO formalism, we now
briefly summarize recent results of determining estimates for the gluon mass in various gauges
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[8, 24, 26]. First, for the Landau gauge the effective potential for σ is [8, 24],

V (σ) = 9NA

2
λ1σ

′2 +

[
3

64
ln

(
gσ ′

µ̄2

)
− CA

(
351

8
CF λ1λ2 − 351

16
CF λ1λ3

+
249

128
λ2 − 27

64
λ3

)
+ C2

A

(
−81

16
λ1λ2 +

81

32
λ1λ3

)

+

(
− 13

128
− 207

32
CF λ2 +

117

32
CF λ3

)]
g2NAσ ′2

π2
+ O(g4),

where space has restricted us to the one-loop expression and λ1 = [13CA − 8TF Nf ]−1, λ2 =
[35CA − 16TF Nf ]−1, λ3 = [19CA − 8TF Nf ]−1 and σ = 9NA

(13CA−8TF Nf )
σ ′. Examining the

solution to V ′(σ ) = 0 there are two possibilities which are 〈σ 〉 = 0 or 〈σ 〉 �= 0. For the former,
this is the original classical vacuum, but the latter corresponds to a new vacuum which has
an energy lower than the former. Thus in the presence of the 1

2AA
µAAµ operator, the effective

potential produces a new vacuum which is stable unlike the now unstable (perturbative)
classical vacuum. Moreover, boundedness of the potential requires that [13CA − 8TF NF ]
needs to be positive [24]. Interestingly this corresponds to the Landau gauge one-loop gluon
anomalous dimension which has been suggested as part of the necessary criterion underlying
confinement when that problem is considered from a renormalization group perspective
[61, 62]. Consequently, if one defines m2

eff = σ/(gξ(g)) as an effective gluon mass then
for SU(3) Yang–Mills meff = 2.13�MS from the two-loop potential [8, 24]. This is within
2% of the one-loop estimate indicating a degree of stability in the approach. As an alternative,
one can compute the gluon pole mass by first redefining σ ′ in terms of the pole mass and
demanding the alternative condition [63, 64],

dV (mpole)

dmpole
= 0. (25)

Interestingly at one loop this produces a Yang–Mills mass which is independent of the
renormalization scale [63]. Though at two loops, like the effective mass of [8], the pole
mass derived from the effective potential is scale dependent.

For the MAG, the analysis is not fully complete as only the one-loop potential for SU(2)

has been determined [26]. However, the situation there is encouraging in that for pure Yang–
Mills a mass is generated for the off-diagonal gluons which is meff = 2.25�MS. This is not
dissimilar to the Landau gauge SU(2) estimate of meff = 2.03�MS. In addition, the off-
diagonal ghost and diagonal gluon remain massless. The appearance of the potential diagonal
gluon mass operator, 1

2Ai
µAiµ, in the LCO action used for the MAG [26], is excluded by the

diagonal U(1) Ward identity deriving from the algebraic renormalization analysis [26]. We
are unable to prove the renormalizability of the action supplemented with a mass term like
1
2JAi

µAiµ. Indeed overall this mass generation scenario appears to be consistent with SU(2)

lattice studies in the maximal Abelian gauge [34, 35, 65].

6. Conclusions

We conclude with various observations. First, we have given an overview of the current
status of the application of the local composite operator method to the condensation of
a renormalizable dimension 2 operator in QCD in various gauges, concentrating on the
underlying renormalization group aspects. One main feature is the construction of a two-loop
effective potential for the operator which requires knowledge of the three-loop anomalous
dimensions of QCD. Whilst these are known for linear covariant gauges, to examine the
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Abelian dominance hypothesis in the infrared, the more appropriate maximal Abelian gauge
needs to be used. This has required the full three-loop renormalization of QCD in the MAG,
which is a significantly larger computation from the point of view of the number of Feynman
diagrams to be evaluated. Moreover, it opens up the possibility of examining the generation
of a mass for the off-diagonal gluon at the two-loop level and for gauge groups other than
SU(2). Whilst this may seem to be a feature of this gauge, the issue of whether one can access
Abelian dominance in a covariant gauge, where the properties of the centre of the group are
not explicit in the fields one uses, has recently been studied using the LCO formalism [66]. In
particular, the presence of ghost condensates in SU(2) appears to be central in the dynamical
generation of a mass for the off diagonal gluons which is different from that of the diagonal
gluons. Indeed there would appear to be evidence from a recent lattice study to support this
point of view [67].
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